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Vectors

The ordered pairs of numbers are called two dimensional vectors. We
denote them with small Latin (boldfaced) letters, e.g a, b, . . . . We make
a distinction between row vectors and column vectors. If otherwise not
stated all the vectors are column vectors.

Examples

a =

[
1
2

]
, aT = [1, 2], x =

[
x1

x2

]
, xT = [x1, x2]

One can define higher dimensional complex or real vectors in a similar
way. We denote by R2, Rn, Cn the set of two dimensional real, the set
of n dimensional real and the set of n dimensional complex vectors
respectively.

Examples

x =

x1

...
xn

 ∈ Rn, xT = [x1, . . . , xn], w =

[
2 + 4i
−1− i

]
∈ C2.
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Addition of vectors

We add the same dimensional column vectors (row vectors)
coordinatewise.

Examples

 1
2
−1

+

−2
6
2

 =

−1
8
1

 , [1+ i ,−1+2i ]+[i , 3+3i ] = [1+2i , 2+5i ],

π +
√

2i√
3− i

1− i

+

 −π − πi
3
√

5 + 4i
sin(1) + cos(1)i

 =

 (
√

2 + π)i√
3 + 3
√

5 + 3i
1 + sin(1) + (cos(1)− 1)i

 .
In general x1

...
xn

+

y1

...
yn

 =

x1 + y1

...
xn + yn

 .
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Multiplication by a scalar

We multiply a vector by a scalar coordinatewise.

Examples

3

−1
2
4

 =

−3
6

12

 , −2
[
10, 0, 2, 3

]
=
[
−20, 0,−4,−6

]
.

i

2i
0
4

 =

−2
0
4i

 , (1− i)
[
1, 0, 1 + i

]
=
[
1− i , 0, 2

]
.

In general

x =

x1

...
xn

 is a vector, and λ is a scalar, then λ ·

x1

...
xn

 =

λx1

...
λxn

 .
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Properties of vector addition

Addition of vectors is a binary operation, that is to say, the result
of an addition of two vectors of the same type will be a vector of the
same type.

The vector addition is associative, in other words, if we add two
vectors and we add a third one to the result, we get the same result
if we add the second and the third, and then we add the first to the
sum.

There is an additive unit, which is the full zero vector. It has the
property that there is no effect when we add it to an arbitrary vector.

There is an additive inverse of every vector a denoted by −a such
that a + (−a).

Vector addition is commutative, which means that changing of the
order of the vectors in the additions does not change their sum.

Pál Burai



Properties of multiplication by a scalar

Multiplying an arbitrary vector by zero the result will be the additive
unit vector.

Multiplying an arbitrary vector by one the result will be the vector
itself.

If we multiply a vector by a scalar and we multiply the product again
by an another scalar the result will be the same if we multiply the
vector by the product of the scalars.

Distributivity: Multiplying by a scalar of the sum of vectors we
have the same result if we multiply both vectors by the scalar and
then add them. Similarly, if we multiply a vector by the sum of two
scalars, the result will be the same if we multiply the vector by both
scalars and then add them.

Pál Burai



Vector spaces

If a set V posses the previous properties then it is said to be a vector
space.

Examples

The plane as a vector space: R2 = {x | xT = (x1, x2), x1, x2 ∈ R }.
The three dimensional real space:
R3 = {x | xT = (x1, x2, x3), x1, x2, x3 ∈ R }.
The n dimensional real space:
Rn = {x | xT = (x1, . . . , xn), x1, . . . , xn ∈ R }.
The n complex space:
Cn = {x | xT = (x1, . . . , xn), x1, . . . , xn ∈ C }.
The space of real polynomials with the degree at most n:
Pn = {p : R→ R | p(t) = ant

n + · · ·+ a1t + a0, a0, . . . , an ∈ R }.
The space of real polynomials: ∪nPn.

The space of continuous functions defined on the same interval.

The space of n times continuously differentiable functions defined on
the same interval.
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Length of vectors and inner product

According to the Pythagorean theorem the length of the vector
aT = (a1, a2) is

√
a2

1 + a2
2. It is denoted by ‖a‖, and it is also called the

norm of a. The norm can be calculated using the inner product of
vectors, which is defined in the following way:

aT · b = [a1, a2] ·
[
b1

b2

]
= a1b1 + a2b2 in the real case,

and

aT · b = [a1, a2] ·
[
b̄1

b̄2

]
= a1b1 + a2b2 in the complex case.

Then
‖a‖ =

√
aT · a in the real case,

and
‖a‖ =

√
aT · a in the complex case.
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In general

xT · y = [x1, . . . , xn] ·

y1

...
yn

 = x1y1 + · · ·+ xnyn in the real case

and

xT · y = [x1, . . . , xn] ·

ȳ1

...
ȳn

 = x1y1 + · · ·+ xnyn in the complex case.

Properties of the norm

If the norm of a vector is zero, then it must be the zero vector.

The norm of a vector multiplied by a scalar is equal to the norm of
the vector multiplied by the absolute value of the scalar.

The norm of the sum of two vectors is less then or equal to the sum
of the norms of the vectors.
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Geometric interpretation of the inner product

The inner or scalar product of two vectors is equal to the product of their
magnitude and the cosine of the angle between their directions:

xT · y = ‖x‖ · ‖y‖ cosαx,y .

So, the scalar product of two vectors x and y is equal to the product of
the magnitude of vector x with the projection of y on x .

Corollary

Two vectors are perpendicular if and only if their inner product is zero.

Exercise

Let xT = (1, 2). Find a vector y which is perpendicular to x! Can you
characterize all such ys?
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Properties of the inner product

Real case:

Symmetry: xT · y = yT · x .

Distributivity: (x + y)T · z = xT · z + yT · z .

Homogeneity (λx)T · y = λ(xT · y).

Positive definiteness: xT · x ≥ 0 for any x , and xT · x = 0 if and
only if x = 0.

Exercise
Find the properties in the complex case!
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Exercises

Let

a =

(
−1

2

)
, b =

(
4
−3

)
, c =

 −5
−2

1

 , d =

 0
−1

7

 ,

u =

(
−1 + i

2i

)
, v =

( √
2 + i

i2 − 3i

)
, w =

 i − 1
i − 2

1

 , z =

 0
−1

7

 .

Find the following vectors!

a + b, −5c, 12a + 4b, 3c + d, ‖b‖, ‖c + d‖, u− iv,

(3 + 2i)w − iz, v − 3iu, ‖w‖, ‖z‖, ‖iz + w‖.
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Linear combination of vectors, linear dependency and
independency

Let x, y be vectors of the same type, and α, β be scalars, then the vector

αx + βy

is called a linear combination of x, y with the coefficients α, β.

Examples

2

 2
1
−1

+ 4

1
4
0

 =

 8
18
−2

 , i

[
2− i
1 + i

]
+ (1 + i)

[
1

2 + 2i

]
=

[
2 + 3i
−1 + 5i

]

In general, if x1, . . . , xn is of the same type, and α1, . . . αn are scalars,
then the expression

α1x1 + · · ·+ αnxn

is said to be the linear combination of the vectors x1, . . . , xn with the
coefficients α1, . . . αn.
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Linear combination of vectors, linear dependency and
independency

Linear combination is not necessarily unique in every cases, e.g.:

2

 2
1
−1

+4

1
4
0

+0

 3
5
−1

 =

 8
18
−2

 , 0

 2
1
−1

+2

1
4
0

+2

 3
5
−1

 =

 8
18
−2


In this case, the zero vector can be written as a linear combinations of
the vectors with not only zero coefficients. 2

1
−1

+

1
4
0

−
 3

5
−1

 =

0
0
0


In this case we say that the zero vector is a non trivial linear
combination of the vectors.

Linear dependency and independency

If the zero vector can be written as a non trivial linear combination of a
system of vector, then this system is called a linearly dependent
system. Otherwise, it is called a linearly independent system.
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Generating set, basis, dimension

A system of vectors is called a generating set of a vector space, if all
the vectors of the space can be written as a linear combination of vectors
from the generating set. In this case we say that this system generates
the space or the space is generated by the system.

Example

The vectors aT = [2, 0, 0], bT = [1, 2, 0] do not generate the space R3.

A vector space is said to be finitely generated, if it has a finite
generating set.

Example

The vectors aT = [2, 0, 0], bT = [1, 2, 0], cT = [2, 1,−1], dT = [1, 1, 1]
generate R3, however this set is not linearly independent.

If a generating set is linearly independent then it is called a basis of the
space. If a vector space is finitely generated, then all its bases contains
the same number of vectors, this common number is called the
dimension of the space.
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Orthogonal basis

In Rn and in Cn besides the vector space structure there is an inner
product. Such spaces are called Euclidean spaces.

If b1, . . . , bn is a basis in an n dimensional Euclidean space, then it is
called orthogonal basis if bi is perpendicular to bj for all
i , j = 1, . . . , n, i 6= j .

An orthogonal basis is called orthonormal basis if
‖bi‖ = 1, i = 1, . . . , n.

Theorem
In any n-dimensional Euclidean space, there exists an orthonormal basis.
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Gramm-Schmidt orthogonalization in R3

Let b1, b2, b3 be a basis in R3, then the vectors

q1 =
b1

‖b1‖
, q̄2 = b2 − (bT2 · q1)q1, q2 =

q̄2

‖q̄2‖
,

q̄3 = b3 − (bT3 · q1)q1 − (bT3 · q2)q2, q3 =
q̄3

‖q̄3‖

constitute an orthonormal basis in R3.

Exercises

Calculate the products qT1 · q2, qT1 · q3, qT2 · q3!

Apply the Gramm-Schmidt orthogonalization for the following
vectors! Check the orthogonality of the resulting systems!

bT
1 = (1, 1), bT

2 = (1, 2).
bT

1 = (−1, 0), bT
2 = (−1, 1).

bT
1 = (0, 0, 1), bT

2 = (0, 1, 1), bT
3 = (1, 0, 1).

bT
1 = (1, 2, 2), bT

2 = (−1, 0, 2), bT
3 = (0, 0, 1).

bT
1 = (0, 1, 2), bT

2 = (1, 1, 2), bT
3 = (1, 0, 1).
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Matrices, addition of matrices

The object

A =

a11 · · · a1,m

...
...

an1 · · · anm

 ,
where aij ∈ R or aij ∈ C, i = 1, . . . , n, j = 1, . . . ,m is called an n ×m
real or complex matrix.The set of n ×m real matrices is denoted by
Mnm(R), and similarly, the set of n ×m complex matrices is denoted by
Mnm(C).
If A and B are of the same type matrices, the their sum is defined in the
following waya11 · · · a1m

...
...

an1 · · · anm

+

b11 · · · b1m

...
...

bn1 · · · bnm

 =

a11 + b11 · · · a1,m + b1m

...
...

an1 + bn1 · · · anm + bnm

 .
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Properties of matrix addition

Matrix addition is a binary operation on the set of matrices, in
other words, the sum of two n ×m real/complex matrices will be an
n ×m real/complex matrix.
Matrix addition is associative:

(A + B) + C = A + (B + C ).

There exists an additive unit: the full zero matrix denoted by 0,
with the property:

A + 0 = 0 + A = A.

For every matrix A has an additive inverse denoted by −A such
that

A + (−A) = (−A) + A = 0.

Matrix addition is a commutative operation, that is to say for two
arbitrary A,B n ×m real/complex matrices we have

A + B = A + B.
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Multiplication of matrices by a scalar

Let λ be a scalar and A be a matrix, then their product is defined in the
following way:

λA = λ

a11 · · · a1m

...
...

an1 · · · anm

 =

λa11 · · · λa1m

...
...

λan1 · · · λanm

 .

Example

3

[
1 2 −1
−2 4 4

]
=

[
3 6 −3
−6 12 12

]
.
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Properties of by a scalar

Arbitrary matrix multiplied by zero results the full zero matrix.

Multiplication by one has no effect.

If we multiply a matrix by a scalar and we multiply the result by an
another scalar, the product will be the same if we multiply the
matrix by the product of the scalars.

Distributivity: To multiply a sum of matrices by a factor gives the
same result if each summand is multiplied by the factor and the
resulting products are added. Similarly, to multiply a matrix by a
sum of factors results the same if the matrix multiplied by each
factors and the resulting products are added.

Pál Burai



Matrix multiplication

Let us consider two matrices. Assume that the first one has the same
number of columns as the number of rows of the second, that is to say
A ∈Mn ×m and B ∈Mm × k . In this situation we can define the
product C = AB, where C ∈Mn × k and the jth element of the i row
of C is the inner product of the ith row of A and the jth column of B, in
more detail

cij =
m∑
t=1

aitbtj .

Exercise

Calculate the products ATB, ABT , CD, CB, ATD, where

A =

1
2
3

 , B =

 −1
i

1− 2i

 , C =

[
1 0 5
−1 i 2

]
, D =

4 −i
3 2
i i + 2


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Properties of matrix multiplication

Matrix multiplication is not commutative.

Matrix multiplication is associative.

Transpose of a product is equal to the product of the transposes in
the reverse order, that is(AB)T = BTAT .

Distributivity: (A + B)C = AC + BC and A(B + C ) = AB + AC .

Exercise
Do the following calculations!
AB, BA, (AB)T , ATBT , (A + B)C , AC + BC , where

A =

−1 i 4
5 1 0
−i 0 1 + i

 , B =

0 1 0
0 0 1
1 0 0

 , C =

 1 1 2
−3 3 1
5 2 2



Pál Burai



Inverse of matrices

The n × n matrix

In =


1 0 · · · 0
0 1 · · · 0
...

...
0 0 · · · 1


is said to be the n dimensional unit matrix. If there is no ambiguity, we
write I instead of In. Let A ∈Mn×n. We call A invertible, if there is
such a matrix B ∈Mn×n for which AB = BA = I .

Exercise
Calculate the inverse of the following matrices![

1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 0
0 i

]
,

[
1 2
3 4

]
.
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Determinant of 2× 2 matrices

Let’s consider the matrix A =

[
a11 a12

a21 a22

]
. We assign a number to A in

the following manner:

detA = a11a22 − a12a21.

This number is called the determinant of A.

Exercise
Calculate the determinant of the matrices below![

1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 0
0 i

]
,

[
1 2
3 4

]
,

[
3 4
1 2

]
,

[
1 3
2 4

]
,

[
1 + i i
−i 2

]
,

[
2 + i 3i
−i 2i

]
,

[
1 + i 2 + 2i
−i −2i

]
,

[
1 1
1 1

]
,

[
1 2
3 6

]

Geometric meaning of the determinant.
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Determinant of 3× 3 matrices

Let us consider the matrix A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

. We assign a number to

A in the following way:

detA = a11a22a33+a12a23a31+a13a21a32−a13a22a31−a12a21a33−a11a23a32.

This number is said to be the determinant of A.

Exercise
Calculate the determinants of the matrices below!1 0 0

0 1 0
0 0 1

 ,
1 0 0

0 0 1
0 1 0

 ,
0 1 0

0 0 1
1 0 0

 ,
1 1 2

2 −1 1
1 1 1

 ,
1 0 0

0 1 0
0 0 1

 ,
2 2 1

1 1 1
2

0 1 0

 ,
 i 1 −i

2 4 1
3i −2i 1

 ,
1− i 0 2

0 −1− i 3
π 0 1

 .
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Laplace expansion theorem

The ij minor of A is denoted by Aij ,that is , the determinant of the
(n − 1)× (n − 1) matrix that results from deleting the ith row and the
jth column of A.

Theorem (Laplace expansion theorem)

If A is an n × n matrix, then its determinant can be calculated using the
cofactor expansion below:

detA =
n∑

t=1

(−1)i+tait detAit , (expansion with respect to the ith row)

or

detA =
n∑

t=1

(−1)t+jatj detAtj , (expansion with respect to the jth column).

Exercise
Let’s calculate the determinant of an arbitrary 4× 4 matrix!
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Linear system of equations, Gaussian elimination

Consider a set of three equations:

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

or

a11 a12 a13

a21 a22 a23

a31 a32 a33


︸ ︷︷ ︸

A

x1

x2

x3


︸ ︷︷ ︸

x

=

b1
b2

b3


︸ ︷︷ ︸

b

The basic idea of the Gaussian elimination method is the transformation
of this set of equations into a staggered set:

a′11x1+ a′12x2+ a′13x3 = b′1
a′22x2+ a′23x3 = b′2

a′33x3 = b′3

All coefficients a below the diagonal are zero. The last equation is solved
for x3. Now, the second can be solved by inserting the value of x3. This
procedure can be repeated for the uppermost equation. We have to
eliminate x1 in all but the first equation. This can be done by subtracting
a21

a11
times the first equation from the second equation and a31

a11
times the

first equation from the third equation. We have to eliminate x2 from the
third equation in a pretty similar way. This procedure is called the
Gaussian method of elimination.
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Linear system of equations, Gaussian elimination

Example

Solve the following linear system of equations using Gaussian method of
elimination:

6x1 −12x2 +6x3 = 6
3x1 −5x2 +5x3 = 13
2x1 −6x2 +0x3 = −10

If A ∈Mn×m and b ∈ Rn or Cn, then the system

(LE) Ax = b, in matrix form (A|b)

is called a linear system of equations, where x is an m dimensional
unknown vector. If b = 0, then the system (LE) is said to be a
homogeneous linear system of equations, otherwise it is called an
inhomogeneous linear system of equations.
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Linear system of equations, Gauss-Jordan elimination

Let us consider whether a set of n linear equations with n variables can
be transformed by successive elimination of the variables into the form

x1 +0 + · · · +0 = c1

0 +x2 + · · · +0 = c2

...
...

...
...

...
0 +0 + · · · +xn = cn

The transformed set of equations gives the solution for all variables
directly. The transformation is achieved by the following method, which
is basically an extension of the Gaussian elimination method. At each
step, the elimination of xj has to be carried out not only for the
coefficients below the diagonal, but also for the coefficients above the
diagonal. In addition, the equation is divided by the coefficient ajj . The
above form is available only case, when detA 6= 0. This method is called
Gauss-Jordan elimination.

Example

Solve the linear system on the previous slide with Gauss-Jordan
elimination!
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Determination of the inverse matrix with Gauss-Jordan
elimination

For a given matrix A we are looking for a matrix X such that AX = I . If
A n × n, then this task is equivalent to the solution of n linear system of
equations. Namely, we have to combine linearly from the columns of A
the natural basis vectors ei , i = 1, . . . , n of Rn, where
eTi = (0, . . . , 0, 1︸︷︷︸

i

, 0, . . . , 0). We can do this with a simultaneous

Gauss-Jordan elimination.

(A|I ) −→ (I |A−1)

Exercise
Calculate the inverses of the following matrices with simultaneous
Gauss-Jordan elimination!2 0 0

2 1 −6
6 0 −1

 ,
1 0 1

0 1 1
1 1 1

 ,
 1 2 1
−1 2 1
2 1 1

 .
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Linear system of equations, existence of solution

Assume that n linear equations with n variables are given. This system is
called linearly dependent if one of the equations can be written as a
linear combination of the others, otherwise the system is said to be
linearly independent. The set of n linear equations with n variables has
a unique solution if the system is linearly independent. If the set of
equations constitute a linearly dependent set, then there is no unique
solution. If the maximal number of linearly independent equations is
m < n, then m − n variables can be freely chosen. If we have more
equations, than variables the system is called overdetermined. The zero
vector is always a solution of the homogeneous system, this is called the
trivial solution.If there exist non zero solution v , then for all λ scalar the
λv is also a solution. Moreover, arbitrary linear combination of solutions
will be again a solution.

Theorem
The solution set of a homogeneous linear system of equations constitutes
a subspace.
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Inhomogeneous linear system of equations

Let v be a vector and S be a subspace of the vector space V . Then the
set

v + S = { x ∈ V | x = v + s, valmely s ∈ S-re }

is called affine subspace.

Theorem
The solution set of an inhomogeneous linear system of equations
constitutes an affine subset, that is to say, the solution set can be written
int the form v + S, where S is the solution set of the homogeneous part
and v is a particular solution of the inhomogeneous system.

Theorem
An inhomogeneous system is solvable if and only if the vector b can be
written as a linear combination of the columns of A.
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Rank of matrices

The dimension of the space which is generated by the columns of a
matrix is called the column rank of the matrix. One can define in a
pretty similar way the row rank of a matrix.

Theorem
The row rank and the column rank of a matrix is the same.

The number defined by the previous theorem is called the rank of a
matrix.

Exercise
Calculate the rank of the following matrices!

[
1 1 1 1
2 2 2 1

]
,

0 2 3
1 1 −1
0 1 0

 ,
0 0 1 1

0 1 2 3
0 2 2 2


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Eigenvalues, eigenvectors

Let A ∈Mn×n be a matrix and x be an n dimensional, non-zero vector.
If there exists a real number λ such that

Ax = λx ,

then λ is called an eigenvalue of the matrix A, and x is said to be an
eigenvector belonging to λ.

Example [
1.5 0
0 2

] [
0

1.5

]
=

[
0
3

]
= 2

[
0

1.5

]

Theorem
Eigenvector belonging to the same eigenvalue constitutes a subspace.
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Determination of eigenvalues

The polynomial
pA(λ) = det(A− λI )

is called the characteristic polynomial of the matrix A.

Theorem
The number λ is an eigenvalue of the matrix A if and only if it is a root
of the characteristic polynomial of A.

Exercise
Calculate the eigenvalues and eigenvectors of the following matrices![

4 2
1 3

]
,

[
1 1
0 1

]
,

[
5 1
4 5

]
,

[
−2 −3
1 1

]
.
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